Design of a C/EBP-specific, dominant-negative bZIP protein with both inhibitory and gain-of-function properties.
نویسندگان
چکیده
We have developed a bZIP protein, GBF-F, with both dominant-negative (DN) and gain-of-function properties. GBF-F is a chimera consisting of two components: the DNA binding (basic) region from the plant bZIP protein GBF-1 (GBF) and a leucine zipper (F) designed to preferentially heterodimerize with the C/EBP alpha leucine zipper. Biochemical studies show that GBF-F preferentially forms heterodimers with C/EBP alpha and thus binds a chimeric DNA sequence composed of the half-sites recognized by the C/EBP and GBF basic regions. Transient transfections in HepG2 hepatoma cells show that both components of GBF-F are necessary for inhibition of C/EBP alpha transactivation. When the C/EBP alpha leucine zipper is replaced with that of either GCN4 or VBP, the resulting protein can transactivate a C/EBP cis-element but is not inhibited by GBF-F, indicating that the specificity of dominant-negative action is determined by the leucine zipper. All known members of the C/EBP family contain similar leucine zipper regions and are inhibited by GBF-F. GBF-F also exhibits gain-of-function properties, since, with the essential cooperation of a C/EBP family member, it can transactivate a promoter containing the chimeric C/EBP/GBF site. This protein therefore has potential utility both as a dominant-negative inhibitor of C/EBP function and as an activator protein with novel DNA sequence specificity.
منابع مشابه
Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design.
We propose an interhelical salt bridge rule to explain the dimerization specificity between the two amphipathic alpha-helices in the leucine zipper structure. Using the bZIP class of DNA-binding proteins as a model system, we predicted and designed novel dimerization partners. We predicted that ATF4, a member of the ATF/CREB family of transcription factors, would preferentially form heterodimer...
متن کاملThe GCN4 bZIP can bind to noncognate gene regulatory sequences.
We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to tha...
متن کاملReengineering natural design by rational design and in vivo library selection: the HLH subdomain in bHLHZ proteins is a unique requirement for DNA-binding function.
To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to ...
متن کاملDNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region.
The PAR subfamily of basic leucine zipper (bZIP) factors comprises three proteins (VBP/TEF, DBP, and HLF) that have conserved basic regions flanked by proline- and acidic-amino-acid-rich (PAR) domains and functionally compatible leucine zipper dimerization domains. We show that VBP preferentially binds to sequences that consist of abutted GTAAY half-sites (which we refer to as PAR sites) as wel...
متن کاملThe bZIP targets overlapping DNA subsites within a half-site, resulting in increased binding affinities.
We previously reported that the wt bZIP, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes GCN4 cognate site AP-1 (TGACTCA) but also selectively targets noncognate DNA sites, in particular the C/EBP site (TTGCGCAA). In this work, we used electrophoretic mobility shift assay and DNase I footprinting to investigate the factors driving the high affinity between the wt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 4 شماره
صفحات -
تاریخ انتشار 1996